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ABSTRACT

This paper asks if recent models for generating co-speech gestic-
ulation also may learn to exhibit listening behaviour as well. We
consider two models from recent gesture-generation challenges
and train them on a dataset of audio and 3D motion capture from
dyadic conversations. One model is driven by information from
both sides of the conversation, whereas the other only uses the
character’s own speech. Several user studies are performed to as-
sess the motion generated when the character is speaking actively,
versus when the character is the listener in the conversation. We
find that participants are reliably able to discern motion associated
with listening, whether from motion capture or generated by the
models. Both models are thus able to produce distinctive listening
behaviour, even though only one model is truly a listener, in the
sense that it has access to information from the other party in the
conversation. Additional experiments on both natural and model-
generated motion finds motion associated with listening to be rated
as less human-like than motion associated with active speaking.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI).
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1 INTRODUCTION

During face-to-face natural language interaction, there is always
one speaker but there is also at least one listener. Data-driven
methods for generating speech behaviour have received significant
attention, while comparatively less emphasis has been placed on
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data-driven methods for generating listening behaviour. Active
listening, in which the listener signals attention, engagement and a
willingness to be part of the interaction, is equally important to a
successful conversation [6]. It is important that both the speaker and
the listener are on the same wavelength, and understand each others
(non)verbal cues, since this serves as ‘social glue’ [17]. It has been
known for a while that nonverbal synchrony and mimicry play a key
role in one-one interactions [13]. Some efforts have been made to
incorporate nonverbal facial back channelling in virtual avatars, to
improve human-agent interactions. One example of this is the work
by Jonell et al. [11], where facial nonverbal feedback is generated
based on data from human dyadic interactions. However, fewer
attempts have focused on generating listening behaviour using
a data driven approach, and evaluating that aspect of nonverbal
dyadic interaction.

In the current study, we want to focus on the abilities of mo-
tion generating models to generate listening motion. For this, we
adapted an existing generative model named StyleGestures, to deal
with dyadic conversational data [2]. We were also interested in the
performance of an existing model on listening behaviour gener-
ation. For this we picked a baseline model that was submitted to
the GENEA Challenge 2022, and received the best reproducability
award. The baseline model has already been compared to other
submissions in the challenge, that focused on co-speech gesture
generation.

2 RELATED WORK
2.1 Gesturing

Many recent studies have focused on generating speech motion for
embodied conversational agents (ECAs). For instance, Kucherenko
et al. [14] leveraged representation learning to map audio to mo-
tion, while Yoon et al. [30] used input text to generate motion while
ignoring the audio input channel. Subsequently, other researchers
have combined both audio and text input, along with speaker iden-
tity, in their gesture generation models, such as [15, 29]. However,
since the goal of gesture generation for ECAs is to help facilitate
effective human-agent interaction, some researchers have explored
generating nonverbal behaviour while considering the interlocutor
[1, 26]. A more in depth review on the field of gesture generation,
especially considering deep learning, can be found in [21]. Despite
these contributions, comparing different models is challenging, as
highlighted by Wolfert et al. [28]. Recently, the GENEA Challenge
[31] has been proposed to address this issue, allowing multiple
teams to submit their model’s motion for a shared evaluation.
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2.2 Listening Behaviour

Listening is an essential aspect of human-agent interaction, and
studies have shown that virtual agents who pretend to listen can en-

hance engagement during an interaction [10]. For instance, Buschmeier

et al. [4] showed that when humans interacted with an attentive
agent, they were more likely to provide listener feedback and rated
the agent as more helpful. Maatman, Gratch and Marsella [19] pro-
posed a model that generates listening behaviour based on available
features during a conversation. Their system extracts audio and
body posture features to drive the listening behaviour. Another
approach by Gillies et al. [7] utilised input audio from the speaker
to generate listening behaviour through motion graphs, where ex-
isting motion clips are combined to match new audio input. Mlakar
[20] introduced a framework and scripting method to synthesise
both verbal and nonverbal motion, that entails both gestures and
listening. Poppe et al. [22] developed rule-based strategies for gen-
erating listening behaviour based on the speaker’s speech and gaze,
including vocal back channelling. A similar approach in terms of
selecting new listening behaviours and sequences can be found
in [3]. They used a multi-modal corpus of interviews to generate
listening behaviour in a virtual agent conducting interviews. Partic-
ipants perceived the interviewer as affiliative when the interviewer
would mirror their posture. An example of generating listening
head behaviour is the work by Jonell et al. [11]. They generated
interlocutor-aware facial gestures using nonverbal and verbal input
from both the interlocutor and agent, using a generative approach.
In our work, we include full conversational data from dyadic inter-
actions to generate listening behaviour based on the audio of both
participants.

3 METHODS

3.1 Dataset and Preprocessing

To ensure that the StyleGestures (SG) model is applicable to a wider
range of conversational interactions, we opted to train it on a data
set that includes human dyadic interactions, rather than just a sin-
gle speaker. “Talking With Hands 16.2," provides a rich source of
dyadic conversational data [18]. This data set includes both motion
capture and audio, totalling 50 hours of recorded interactions. For
the baseline model we made use of annotations provided by the
GENEA Challenge 2022 [31]. We opted for only including conversa-
tional takes that included the speaker labelled ‘deep5’ in the original
data as a participant, since this was the single speaker with the
most data in the data set. Furthermore, we conducted a thorough
manual inspection of the data set to exclude takes that exhibited
significant motion errors. This resulted in subset with 10 hours of in-
teractions. By adhering to these selection and inspection processes,
we aimed to create a reliable and high-quality data set for training
and evaluation purposes. The audio channel was transformed into
a 27-channel mel-frequency representation following the original
paper on SG [2]. The resulting features were down-sampled to 30
frames per second (FPS), to match up with the frame rate of the
motion. Poses (joint rotations) were represented using exponential
maps, which prevents discontinuities [8], and full-body motion was
used excluding finger and facial information.
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3.2 Models

For this work, we make use of two models that were originally
designed to learn gesture behaviour from human data. SG is taken
for its generative capabilities, and we adapted it to work with dyadic
conversational data. As we aim for a fair comparison in relation
to the ground-truth data, we also trained another model named
‘baseline’.

3.2.1 StyleGestures. StyleGestures is a probabilistic generative se-
quential model based on MoGlow, which uses normalizing flows
[2]. The model was modified to accept dyadic input, with the input
being a concatenation of two audio streams (speaker and interlocu-
tor), a one hot encoding of the speaker identity, and the motion
stream of the interlocutor. The output of the model is joint rota-
tions for the speaker. The modified SG model was trained using
the standard parameters from the SG paper [2], with batch size
120, noam_learning_rate_decay with 3000 warm up steps, and a
minimum of 0.00015. The optimiser used was Adam, with a learn-
ing rate of 0.0015. Due to the size of the input data, the model was
trained for 160k steps before test motion was generated. We applied
post-processing to the motion data to improve the quality of our
generated listening behaviour. Specifically, we used a Butter worth
low pass filter to smooth the rotation data. The cutoff frequency
was set to 3.0 Hz and the filter order was set to 4.

3.2.2 Baseline. We wanted to compare our results to a model that
had already been applied to the data set we used. For this, we
selected the “The IVI Lab entry to the GENEA Challenge 2022,
since the code for this entry was openly available and tested by
others, winning the reproducibility award at the challenge [5]. The
baseline model is based on the Tacotron2 architecture from speech
synthesis with a locality constraint attention mechanism, and takes
text and speech audio as input to generate motion data [25]. It was
trained on only the text and speech input data from the speaker
whose motion we are predicting, namely speaker 1 (in contrast to
our SG model that was trained on full dyadic data). For the training
parameters we relied on the values used by [5].

3.3 Visualisation

We rendered the generated motion on a faceless avatar (see figure 1),
that was provided by the GENEA Challenge 2022. The hands were
fixed for all positions since we did not learn the finger positions.

3.4 User Studies

For the first study we relied on pairwise comparisons, where we
mismatched listening behaviour segments with speech behaviour
segments. This mismatching paradigm has previously been used
by [11, 23, 31]. For the human-likeness evaluations of the listening
and speech behaviour, we used an existing evaluation methodology
named HEMVIP [12] that is based on the ITU MUSHRA standard
for audio quality evaluation [24]. HEMVIP utilises a sliding scale
with 100 steps and five anchors (bad, poor, fair, good, excellent),
and has been used by various researchers for evaluating generated
behaviour [9, 16, 27, 31]. All participants were recruited on Prolifict.

Uhttps://prolific.co
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Figure 1: The HEMVIP system with the human-likeness eval-
uation showing the avatar we utilised [12].

3.4.1 Study 1: “Does it listen?” The purpose of this study was to
investigate the ability of participants to identify generated listening
segments when presented with unrelated speech motion fragments.
We recruited 32 participants who were required to be native Eng-
lish speakers. Listening segments were generated using either the
baseline model or the SG model. To determine whether participants
were able to distinguish matching listening motion versus mis-
matching speech motion, speech motion segments were obtained
from the ground-truth. Each matching or mismatching segment
was then added to a video containing a speaker, who was positioned
on the left of the video with the listener on the right. Audio for each
conversation was added to the video. We selected 30 listening seg-
ments per condition, totalling 60 segments. The videos containing
the conversations (matching versus mismatching) were presented
side by side in a random order, and the order of presentation was
also randomised. Participants were asked the question: "Please indi-
cate in which of the two clips the character on the right moves like
a listening person." Each participant was presented two attention
checks, inserted at random points during the experiment. One check
was text based and the other one audio based, halfway the video it
would ask the the participant to select the button belonging to that
specific video. We used Barnard’s test for identifying statistically
significant differences between conditions at the level of & = 0.05.
Additionaly, the Holm-Bonferroni method was applied to correct
for multiple comparisons.

3.4.2  Study 2: “Human-likeness for listening”. This study investi-
gated the human-likeness of the generated listening behaviour. For
this, we compared it to the baseline and ground-truth motion. We
recruited 22 participants who were required to be native English
speakers. From the test set, 30 listening segments were selected,
and listening motion was synthesised from SG and the baseline, or
taken from the ground-truth. The videos did not feature audio, as
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we wanted participants to specifically focus on the motion. Partic-
ipants were asked the following question: “How human-like does
the listening motion appear?”, and had to rate the videos on a scale
from 0 to 100. Three videos were placed on one screen, using the
HEMVIP framework for evaluating the stimuli [12](see figure 1).
The order of the videos on the screen was randomised, as well as
the order in which the screens were presented to the participant.
Each participant was presented with two attention checks, inserted
at random places during the experiment. Both attention checks
would ask the participant to rate the video with a certain score.
The text for the attention check would only appear halfway the
video. Each participant rated 14 screens with 3 stimuli per screen,
totalling 42 ratings per participant and 308 ratings per condition.

3.4.3  Study 3: “Human-likeness for gesticulation”. For this study
we followed the approach of study 2. In this study we investigated
the human-likeness of the model generated speaking behaviour. For
this, we compared it to the baseline and the ground-truth motion.
We recruited 22 participants who were required to be native Eng-
lish speakers. As in study 2, 30 segments were selected where the
avatar was talking. Participants were asked the following question:
“How human-like does the gesture motion appear?” Each participant
rated 14 screens with 3 stimuli per screen, totalling 42 ratings per
participant and 308 ratings per condition.

3.5 Objective Analysis

As pointed out often before, there is no single objective metric that
can capture the quality of the generated motion. Therefore, we rely
on commonly used and reported objective metrics in the field such
as the acceleration and jerk.

4 RESULTS

4.1 User Studies

4.1.1  Study 1: “Does it listen?” In this study, we looked at matching
versus mismatching for listening behaviour, where the mismatched
video used unrelated speech motion. 2 3 Participants were presented
with pairs of matching/mismatching videos and asked to choose
which one featured the listening motion. They also had the option
to choose that the videos were equal. 32 participants were recruited,
of which 30 passed the attention checks. Of these, the mean age
was 40.6 years (SD=11.5). 15 identified as female and the other 15
identified as male. 28 participants were from the UK, 1 from the
USA, and 1 from New Zealand.

For SG 46 (16%) videos were reported as equal, 178 (61%) as
matching and 69 (23%) as mismatched. For the baseline this was
25 (8%) reported as equal, 215 (72%) as matching and 57 (20%) as
mismatching. We further performed Barnard’s test with Holm-
Bonferroni correction to analyse the data. In the SG condition, we
found a significant difference between matched and mismatched
videos (Chi2 stat: 69.0, p-value: < 0.001). Similarly, in the baseline
condition, there was a significant difference between matched and
mismatched videos (Chi2 stat: 57.0, p-value < 0.001). These results
suggest that participants were able to perceive which video of a
pair featured the listening behaviour.

238G listening on the right: https://player.vimeo.com/video/820607290?h=586ce22531
3BL listening on the right: https:/player.vimeo.com/video/820607372?h=0e0fc479a9
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Figure 2: Boxplots of human-likeness scores for StyleGes-
tures (SG), baseline (BL), and ground truth conditions (GT),
with conditions grouped by speech or listening.

Condition ‘ Mean Jerk ‘ Mean Acceleration

Ground-truth S | 38660.78 (SD=830 1101.37 (SD=287.00)
Ground-truth L | 23980.68 (SD=4494.39) | 524.74 (SD=148.00)
Baseline S 10318.88 (SD=2741.81) | 422.34 (SD=120.20)
Baseline L 4633.45 (SD=1981.94) 182.61 (SD=84.49)
(
(

StyleGestures S | 3392.73 (SD=6620.53) 235.97 (SD=306.05)
StyleGestures L | 3395.10 (SD=4340.59) | 215.46 (SD=174.55)

Table 1: Mean Jerk and mean Acceleration for the generated
speech (S) and listening (L) behaviour.

4.1.2  Study 2: “Human-likeness for listening”. 22 participants par-
ticipated and passed the attention checks. The mean age was 41.8
years (SD=13.94). 9 identified as female and 13 identified as male.
16 participants were from the UK, 1 from the USA, 2 from Ireland,
and 2 from New Zealand.

The median score for SG was 47 (95% CI[45.00,49.00]), for the
baseline 41(95% CI[40.00, 44.00] and for the ground truth 56.5(95%
CI[53.00, 60.00]. Paired Wilcoxon signed-rank tests were conducted
between SG and baseline, SG and GT, and baseline and GT con-
ditions for listening. The results showed a statistically significant
difference in the human-likeness perception between the SG and
baseline conditions (Z = 16265.5, p < 0.0001). The results also showed
a significant difference between the SG and GT conditions (Z =
16506.0, p < 0.0001). Lastly, there was a significant difference be-
tween the baseline and GT conditions (Z = 11646.5, p < 0.0001).

4.1.3  Study 3: “Human-likeness for gesticulation”. 22 persons par-
ticipated and passed the attention checks. The mean age was 35.2
years (SD=12.4). 6 identified as female and the other 16 identified
as male. 20 participants were UK nationals, 1 identified as a USA
national and 1 participant resided in Ireland.

The median score for SG was 47 (95% CI[45.00,49.00]), for the
baseline 41(95% CI[40.00, 44.00] and for the ground truth 56.5(95%
CI[53.00, 60.00]. We conducted paired Wilcoxon signed-rank tests
to the SG, baseline and ground-truth conditions. It revealed a sig-
nificant difference in the similarity ratings between the SG and
ground-truth conditions (W=6116.0, p<0.001) as well as between
the baseline and ground-truth conditions (W=6865.5, p<0.001). How-
ever, there was no significant difference in the similarity ratings
between the SG and baseline conditions (W=20631.0, p=0.097).

4.2 Objective Analysis

We calculated the mean jerk and mean acceleration The result for
the listening and speech motion can be found in table 1.
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5 DISCUSSION

We conducted three user studies to evaluate the quality of our model
on generating listening motion. We found that our adaptation of
StyleGestures (SG) under performs in comparison to the baseline
(BL) and the ground-truth (GT) for the mismatching study. Even
though 60% are correctly identified as matching stimuli, more stim-
uli are identified as "they’re equal”, than for the BL (where only
72% was correctly identified. It shows that for quite some situations
participants found it hard to identify the correct segment.

The second study looked at human-likeness for listening be-
haviour. Here we found significant differences between the three
conditions. GT scored the highest, followed by SG and BL. Since
this evaluation excludes audio, participants are more focused on
evaluating the motion aspect.

In the third study we evaluated human-likeness for speaking. We
found a significant difference for the two conditions with GT, but no
significant difference between SG and BL, which is an interesting
finding since the baseline model incorporates semantic information
in relation to its gestures. However, the notion of semantic related
gestures is not something that we can catch with human-likeness
evaluations, since these revolve around motion quality and not
appropriateness of gestures with speech audio.

When we look at the results of the objective metrics, we can
observe that for BL the jerk and acceleration is much higher for
the speech behaviour than the listening behaviour. For SG, there is
not a large difference in mean jerk and mean acceleration between
speech and listening (although the standard deviation is). One pos-
sible explanation for this phenomenon is the significant disparity
between listening and speech behaviours within the data.

Since the main aim of this work was to compare SG to BL and the
GT for generated listening behaviour, the results from study 1 and
2 give an indication that we can use generative models, originally
used for co-speech gesture generation, for generating listening
motion.

Future work should focus on the appropriateness of generated lis-
tening behaviour in relation to (speech) audio, and the evaluation of
data driven listening behaviour in embodied conversational agents
to see whether such an approach could lead to proper nonverbal
feedback. Additionally, these full body motion models should be
compared with and against models that integrate facial expressions
[11], as traditionally much attention has been paid to nonverbal
facial feedback channels as well as the fact that a lot of human to
human interaction revolves around face to face communication.

6 CONCLUSION

We assessed a generative model’s efficacy in creating listening
motion. Comparing three conditions, our approach closely approx-
imated ground-truth human-likeness. It is an initial step toward
automating nonverbal feedback integration, needing more research
for real-life scenarios.
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